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“A woman is enjoying her time under sunshine on a swing.”

“ A woman is in a squat pose, holding the medicine ball in front of her chest.”

“A man is pedaling a bike in the living room as his daily workout.”

“A man is jogging early in the morning along a picturesque park pathway.”

“A young woman is cleaning her kitchen with a vacuum.”“A young boy with Christmas outfit is playing with a German Shepherd.”
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“A man is sitting on sofa in a horror film Halloween style living room.” “A girl is sitting on an armchair in the ancient Chinese forbidden city.”
 “Halloween-style”

AI-generated Scene Output Video Output VideoAI-generated Scene

 “Ancient Chinese”

Figure 1. We repurpose a text-to-video generation model as a human-world interaction simulator. Given a scene image and a prompt, our
model inserts a person into the environment and generates a video of them naturally interacting with the scene. The scene can be real
images (top) or synthesized by image generative models (bottom). Notably, there is no need for any mask, location bounding boxes, or
pose sequences to guide the human insertion – our method takes care of affordance prediction entirely within the video model.

Abstract

Can a video generation model be repurposed as an interac-
tive world simulator? We explore the affordance perception
potential of text-to-video models by teaching them to pre-
dict human-environment interaction. Given a scene image
and a prompt describing human actions, we fine-tune the
model to insert a person into the scene, while ensuring co-
herent behavior, appearance, harmonization, and scene af-
fordance. Unlike prior work, we infer human affordance for
video generation (i.e., where to insert a person and how they
should behave) from a single scene image, without explicit
conditions like bounding boxes or body poses. An in-depth
study of cross-attention heatmaps demonstrates that we can
uncover the inherent affordance perception of a pre-trained
video model without labeled affordance datasets.

1. Introduction

Scaling data, compute, and model parameters in video gen-
eration models presents a promising avenue for developing
highly capable simulators that can accurately replicate com-
plex physical worlds [8, 48], complete with diverse objects
and people that interact and coexist within them. Neverthe-
less, humans are not merely passive observers, but rather
active participants in the world. Human understanding of
affordance [21, 34, 45] enables purposeful engagement with
surroundings and adaptive behavior by recognizing poten-
tial actions afforded by an object’s physical properties. It
remains unclear whether video generation models can in-
terpret and replicate intricate semantic aspects of the world,
such as contextual understanding and dynamic behavior, be-
yond the capabilities of traditional graphics pipelines.



Affordance, or “opportunities for interaction” [21], has
inspired extensive research in vision and psychology. Tra-
ditional affordance prediction relies on data-driven ap-
proaches using 3D information [25], specifically labeled
datasets [12, 15, 19, 23, 63], or one-shot large foundational
models [38]. However, these methods rely on domain-
specific annotations, which are challenging to obtain. In
contrast, recent advancements in generative models offer
the potential to create realistic human-scene media content
using vast amounts of in-the-wild media data. [36], for ex-
ample, predicts a human’s pose and appearance in a scene
but is restricted to static images with a given position mask.

In this work, we demonstrate that throughout the intri-
cate process of video generation, the model learns to gen-
erate human activities and motions that adhere to the af-
fordance constraints dictated by the physical world. To
better study affordance modeling, we propose augmenting
a pre-trained text-to-video model [48] with an additional
scene conditioning branch. This modification formulates
the problem as a conditional video generation task: given
a scene represented by an image, the model is tasked with
introducing natural human motion and interactions to the
scene. We discover that pre-trained video generation mod-
els can rapidly adapt to this new task by fine-tuning on a
relatively small-scale scene conditioning dataset. We then
validate the affordance perception abilities through an ex-
tensive study of the cross-attention feature heatmaps, a key
module that enables the model to follow language prompts.

Unlike prior work, our model does not require input
masks, bounding boxes, or pose sequences to specify re-
gions or patterns of human behavior, which makes it an
interaction simulator that reasons about semantics and af-
fordance properties in the scene, instead of merely a human
renderer that turns given pose signals into pixels. During in-
ference, the model can process a wide array of environment-
action combinations to generate diverse interactive videos,
not limited to interaction with the single, salient object in
a complicated scene. Fig. 1 demonstrates results of our
model without aggressive cherry-picking. In particular, the
last row of Fig. 1 illustrates a ”movie studio” pipeline where
input scenes are generated using a text-to-image model [14],
and our model seamlessly integrates actors into these scenes
without requiring 3D capture. Our results lower the barrier
for amateur AI video creators by eliminating the need for
explicit body poses signals, as they are required in most AI
human video models but challenging to synthesize.

In short, this work makes the following contributions:
• We address affordance-aware human video generation,

where we generate video of subject(s) interacting with
a given environment image, without telling the model
where the subject(s) are and how their poses look like.

• We apply the dual-stream conditioning mechanism with
a minimal grounding module to model affordance, and

thus reveal the affordance capabilities of video generation
models through in-depth analysis.

• We demonstrate our model’s ability to generalize across
diverse environments and actions through a synthetic
benchmark created with vision-language models.

2. Related Works
Text-to-video generative models. Text-to-video genera-
tion aims to synthesize plausible, temporally coherent, and
optionally condition-aligned video sequences from textual
prompts. Recent rapid advancements in text-to-video mod-
els have been phenomenal [3, 4, 7, 11, 18, 20, 26, 27, 48,
55, 61]. Current work explores replacing the traditional U-
Net with a Transformer [60] architecture [7, 24, 44, 48],
inspired by the promising text-to-image generative results
from DiT [47]. We start from a pre-trained Transformer-
based text-to-video model Movie Gen [48] and explore its
ability to perceive affordance through minimal fine-tuning
on human-scene interaction data. Some text-to-video tasks
augment the model with an image as a starting frame
and use prompts to describe the style or motion in the
video [22, 50, 72]. Our task differs in that we give the model
an empty scene frame that is not supposed to appear in the
video, but provides a “playground” for population.
Human video generation. Human video generation
evolves alongside rapidly advancing generic video gener-
ative models. Generating realistic human content is inher-
ently challenging due to complex body topology, strong pri-
ors on interaction plausibility, and audiences’ sensitivity to
even minor artifacts. Existing methods use motion guid-
ance to improve video faithfulness, leveraging signals such
as OpenPose [28, 62], DensePose [31, 67], SMPL [74], or a
driving video [71]. These works focus on human video gen-
eration with the subject as the sole salient element, without
modeling human-environment interaction. Our work dif-
fers in that we reason about natural human-scene interaction
without compromising human quality. Notably, our method
requires no auxiliary conditions such as position bounding
boxes [36, 56] or motion sequences, relying instead on the
internal affordance inference potential of video models.
Human-scene interaction modeling. A fundamental task
in human-environment modeling is motion prediction in 3D
scenes [32, 39, 64]. Related work in 2D explores interac-
tion image and video generation from a scene, mostly us-
ing some location or body pose signals as condition [29,
46, 53, 69]. Kulal [36] and Cao [9] claim to predict af-
fordance by inserting a human subject into a static scene,
but they require a bounding box as input indicating the
position. Shan [54] insert moving humans into a street
scene, but restrict actions to predefined walking motions.
Singh [56] predict fine-grained masks for human insertion
based on scene and text descriptions but do not explicitly
model human-scene interaction. Jin [30] builds on similar
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Figure 2. We start by removing humans from raw frames to create synthetic empty-scene and human-video data pairs. We employ a
dual-conditioning mechanism, using channel concatenation and cross-attention, to condition the T2V model on an additional scene image.
We design a fusion module to facilitate interactions between image and action-text features while locating the desired action position. The
fine-tuning pipeline trains a Transformer architecture with flow matching.

ideas as ours, but focus on static images with non-human
objects, which in nature lack intricate interactive dynamic
behaviors. Our work instead requires no semantic priors for
where and how human-scene interaction occurs.
Affordance. Psychologist J.J. Gibson defines affordance as
the possibilities an environment offers an individual [21, 45]
and views affordance perception as essential to socializa-
tion. Inspired by this concept from cognitive psychol-
ogy, computer vision research explores scene and object af-
fordance prediction [13, 57] and affordance learning from
human-scene interactions [15, 19, 63]. Inspired by this on-
going discussion, we study how generative models perceive
affordance by creating interactive videos.

3. Preliminary: Text-to-Video Generation
In this work, we leverage Movie Gen [48] as our base text-
to-video model. Due to resource limitations. we conduct
our experiments on a 4B-parameter model that generates
128-frame 256p videos as a proof of concept, instead of
training the official 30B-parameter model that operates at
1080p. We highlight key architectural and training aspects
incorporated into our experiments in this following section.
Refer to the supplementary material for more details.
Temporal autoencoder. Our model encodes RGB videos
and images into a learned spatiotemporally compressed la-
tent space using a Temporal Autoencoder (TAE) and gen-
erates videos in this space. The TAE encoder is designed
by inflating the image autoencoders in [51], adding an 1D
temporal convolution after each 2D spatial convolution and
an 1D temporal attention after each spatial attention.
Video generation backbone. The model generates videos
within a learned latent space as defined by the TAEs. The

latent video code is segmented into patches via a 3D con-
volutional layer [16], then flattened into a 1D sequence as
input to the generation backbone. The generation backbone
consists of Transformer [60] blocks with cross-attention
modules inserted between self-attention and feed-forward
networks, enabling text conditioning via text prompt em-
beddings. The model employs UL2 [58], ByT5 [68], and
Long-prompt MetaCLIP [66] as text encoders, enabling
both semantic- and character-level text understanding.
Flow matching. The model is trained with Flow Match-
ing [5, 41], which iteratively transforms a prior Gaussian
distribution into a sample from the target data distribution.
During inference, an ordinary differential equation (ODE)
solver transforms random noise into video latents. We use
this training and inference framework for all experiments.

4. Affordance-Aware Video Generation
Our full pipeline is illustrated in Fig. 2. We define the prob-
lem, explain data processing and model architecture below.

4.1. Task Definition
Let I be an image of a static scene, and let Th and Ta be
text prompts describing a human’s appearance and action.
We generate a video V that depicts the given scene I with
an inserted human matching the appearance described by
Th and performing the action in Ta. During training and
inference, we provide no explicit guidance for the human’s
position or pose in the scene, allowing the generative model
full freedom to position the action, simulate body move-
ments, and render the video. Note that this is not image
animation; the scene image serves only as a reference for
the background appearance and the presence of semanti-



cally meaningful objects. We do not require the image to
appear as a frame in the video, nor do we treat the scene as
a static background for pasting the human without environ-
mental animations or camera viewpoint changes.

4.2. Training Data
In this section, we explain our full data processing pipeline.
Representative data samples are shown in Fig. 3.
Human filtering. We curate our dataset by selecting
human-related videos from the ShutterStock [1] text-video
dataset. We apply human detection to each middle video
frame and retain only those with one or two detected per-
sons.
Full body filtering. We apply OpenPose [10] to videos that
pass the previous stage, retaining those where knees’ key-
points are visible or face’s height and width falls below a
threshold to avoid half-body or close-up shots.
Pure background filtering. We compute the color variance
of background pixels in the middle frame of each video,
retaining only those exceeding a threshold of 200. We
also scan video captions and exclude those containing key-
words like “a pure green background.” This helps eliminate
studio-recorded videos that lack background interaction.
Human removal. We take the first and last frames of each
video, with GroundingDINO [42] detecting the central hu-
man subject and language-guided SAM [33] segmenting the
human mask. We dilate the mask by 50 pixels to fully
cover the human region and apply a text-to-image inpaint-
ing model with the negative prompt ”human” for removal.
For two-person videos, we remove one person at a time,
creating two data samples from a single video. This results
in a training dataset of (text, image, video) tuples
representing (action, scene, interaction), in-
cluding 217,530 samples for single-person data and 29,700
for two-person data. We handpick 300 samples per cate-
gory for validation and detail the post-processing steps for
the synthetic validation benchmark in Sec. 6.1.
Prompt rewriting. We use LLaMA 3 [17] to rewrite video
captions, separating out human-related prompts (Ta and
Th) and removing sentences that pertain solely to the back-
ground. This allows the model to learn background infor-
mation purely from the visual modality rather than text, pro-
moting multimodal information fusion.

4.3. Conditioning Mechanism
During fine-tuning, we aim to keep the original structure as
much as possible, while exploring conditioning strategies to
unfold a text-to-video model’s innate ability on perceiving
affordance from a scene image. We discuss key strategies
to condition the model on an additional image input.
Masked latent concatenation. To maintain background
consistency with the given image I , we concatenate the im-
age latent Z1 with the noisy latent Z2 along the channel di-

One-person video frame (top) and inpainted scene (bottom)

Two-person video frame (top) and inpainted scenes by removing each subject (bottom)

Figure 3. Representative samples of our dataset. Top row shows
single-person data, while the bottom row shows double-person
data. Within each row, the top figure presents the raw first frame
of the video, while the bottom figure(s) show the result after de-
tecting and removing humans from the scene. The background
remains unchanged while the subject is removed.

mension before feeding them into the Transformer’s back-
bone. Since our model is not an image animation model,
we allow environmental updates driven by both the action
prompt Ta and natural effects such as camera movements.
To achieve this, we progressively add Gaussian noise to the
conditional image latent Z2 with a temporal scaling factor
of γ = 0.8, weakening control as the video progresses un-
til the last frame is fully masked. This decay-based control
strategy ensures the scene initially matches the given image
while allowing camera movement and human interaction to
modify scene elements over time.
Fused text-image feature enhancer. We augment the
cross-attention conditioning branch with a fusion module
that practices mutual attention on embeddings of image
and action text, drawing inspiration from [40, 42]. Fol-
lowing the original model, we concatenate three types of
text embeddings (ByT5, UL2, MetaCLIP) to form a uni-
fied textual representation and use the CLIP image feature
map before pooling it into a spatial-aware image embed-
ding. We apply deformable self-attention [65] to enhance
image features and standard self-attention for text features.
To promote cross-modal alignment, we introduce separate
image-to-text and text-to-image cross-attention layers for
feature fusion. This fusion module enhances the text-to-
video model’s grounding ability, allowing it to ’locate’ cor-
responding action regions within the image. We concate-
nate the fused image embedding with raw textual embed-
dings and input them into each Transformer block in the
text-to-video model via cross-attention, as in Sec. 3.
Controlled guidance scale. Following the practice of
InstructPix2Pix [6], we leverage a controlled multi-scale



guidance mechanism to control the strength of background
scene image and action prompt. A higher image strength
preserves scene consistency, while a higher text strength
emphasizes human action and promotes plausible environ-
mental updates. Training with dummy condition images
helps maintain the pre-trained model’s text-to-video capa-
bility and prevents overfitting to a specific dataset domain.

4.4. Implementation Details
We use the base text-to-video model Movie Gen [48] with
4B parameters, as described in Sec. 3. We train with land-
scape 256p, 16 frames per second, eight seconds per video.
We fine-tune the full model with the text encoders frozen.
We use a per GPU batch size of 1, and a learning rate of
1e-5. The training takes two days on 32 H100 GPUs.

5. Unveiling Implicit Affordance Capability
We comprehensively analyze the implicit affordance mod-
eling capabilities of our proposed model. In Sec. 5.1 we jus-
tify that affordance perceiving information can be unveiled
by investigating the the cross-attention modules, specifi-
cally which processes and regulates the CLIP text condi-
tions. In Sec. 5.2 we apply our model on a real-world af-
fordance prediction dataset. As a preliminary, the primary
objective of cross-attention is to select appropriate values V
using the attention scores S determined by

S = softmax(QKT /
√
d) ∈ Rn×m

Here, Q ∈ Rn×d represents the projected and flattened in-
termediate diffusion features. K ∈ Rm×d and V ∈ Rm×d

are the projected features of the input text embedding. The
attention map S provides a physical interpretation where
each entry (i, j) indicates the saliency of interaction be-
tween a spatial location i and a token j in the prompt. This
saliency reflects how strongly a particular spatial feature is
influenced by or associated with a specific word, guiding
the model in generating contextually relevant outputs.

5.1. Predicting Affordances via Cross-Attention
We explore the implicit affordance reasoning capability of
video modela by visualizing the j-th entry of the attention
map S where the j-th token corresponds to an action-related
term in the prompt. For example, given the input prompt “a
woman holding the rope and riding a horse”, we focus on
visualizing the attention heatmap associated with the verb
“holding” and “riding”.

The top half of Fig. 4 shows the attention scores of the
pre-trained T2V model. Trained exclusively on text-video
pairs, the model exhibits a reasonable ability to perceive
affordances while generating high-quality, faithful content.
The heatmaps align well with action regions, highlighting
the model’s ability to associate generated spatial features
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Figure 4. Cross-attention maps of the video models. Top half is
the pre-trained model where the presented scene is generated by
the model, and bottom half is our scene-conditioned model with a
real image as input. Attention is averaged across timesteps.

with actions. However, this correlation appears to be a by-
product of video model training, as the heatmaps are con-
ceptually intermediate steps in synthetic video generation.

Building on this observation, we propose that condition-
ing the model on an additional scene enables it to perceive
affordances in a given, real image. The bottom half of the
figure shows that the model accurately identifies action lo-
cations in input images and the specific environmental ele-
ments involved in the interaction. Our heatmaps reveal in-
ternal affordance knowledge, capturing interaction oppor-
tunities in real images rather than merely serving as by-
products of synthetic content generation.

5.2. Real-World Affordance Prediction Experiment
We subsequently analyze our model’s affordance perception
using classical 2D affordance detection datasets. We filter
the Purpose-Driven Affordance (PAD) dataset [43], retain-
ing only images with no person and action verb-object pairs
representing human actions (e.g., push, hit) and discarding
passive object verbs (e.g., contain). This leaves us with
24 action verb categories, totaling 235 images with corre-
sponding affordance masks. We create the prompts based
on the affordance verb with LLaMA [17], and pass in the
image and prompts as inputs for our model.

In Fig.5, we present heatmap visualizations, derived sim-
ilarly to those in Sec.5.1. We also compute the spatial ac-
curacy (defined as pixel-wise IoU) between the binarized
attention map and the ground-truth affordance mask across
different layers and diffusion inference steps. We observe
slightly higher scores in the initial layers, likely because
the model processes semantic information early in gener-
ation. Even in the early steps, our model consistently pre-
dicts affordance through attention features. Accuracy de-
creases in later steps as the model shifts from perceiving
high-level semantics to refining details of generated content.
Peaks in the attention heatmap gradually transition from in-
teraction regions to human content. The spatial alignment



of heatmap and ground-truth affordance maps highlights
the video model’s ability to perceive affordance in align-
ment with real-world data. Our model even outperforms the
ground-truth by predicting object parts relevant to each ac-
tion rather than entire objects. For example, it identifies the
seat of a bench where people sit, rather than its legs.

Input Scene GT Mask PredictionPrediction Accuracy
ride

kick

sit

Figure 5. Affordance position accuracy across different steps and
layers on a subset of PAD [43]. The attention scores indicate
strong predictive ability, and visualizations show that our model
accurately locates detailed affordance information.

6. Results
We present quantitative and qualitative results of our pro-
posed affordance-aware human video generation models.

6.1. Evaluation Dataset
We aim to generate diverse actions interacting with more
than one parts of the environment, even within a fixed scene.
To address this, we curate synthetic prompt sets based on
real scene images. Specifically, we use a pre-trained vision-
language model to generate two prompts per scene by ask-
ing, ”What might a person do in this scene?” This process
yields an evaluation set of 300 images, each paired with one
original and two synthetic prompts. These prompts empha-
size different objects or positions within a complex environ-
ment, allowing us to assess whether our model’s generative
ability extends beyond central, salient objects. We repeat
this process for two-person scenarios, prompting interac-
tions with both the scene and the existing person. Fig. 6 il-
lustrates our benchmark pipeline. We will release this eval-
uation benchmark for follow-up comparisons.

6.2. Baselines and Ablation
Baselines. To the best of our knowledge, there is no ex-
isting work on generating human videos in a scene without
location or pose control. We therefore compare our meth-
ods with generic image/video editing and image-to-video
solutions not tailored for humans. We compare with three
image-based models: (1) InstructPix2Pix [6] where we di-
rectly apply an image editing model on the empty scene im-
age with the prompts. (2) Flux Editing which trains in-

Describe how a person 
may act in this scene!

A person can:
- Clean with the vacuum
- Sit on the chair
- Open the drawers
- …

Appearance: She has fair 
skin and long dark hair…

Action: She uses a vacuum 
cleaner in a kitchen...

Appearance: He is in a light 
blue t-shirt, beige shorts…

Action: He is sitting at the 
chair eating his dinner..

… …

Rewrite

Figure 6. The synthetic action descriptions generated through our
prompting process. We use a vision language AI agent to decide
palusible actions in a scene, and rewrite the action into prompts.

structional image editing on Flux [37]. (3) Flux Inpaint-
ing where we provide a groundtruth human mask as the in-
painting position. We then compare with instruction-based
video editing method (4) AnyV2V [35] where the scene is
repeated for 2 seconds to a video, and then edited based
on a prompt. We additionally compare with one open-
source and two commercial video generation models (5)
CogVideoX [70], (6) Runway Gen-3 [52] and (7) Luma
AI Ray-2 [2] where we apply image-to-video on the scene
with a prompt. For (1), (2), (3), we attach a CogVideoX
image animation model to the image results, exploring their
potential of generating interaction videos in the same setting
as ours. Note that we only do small scale visual comparison
and human evaluation on (6) and (7) without quantitative
metrics as they do not have a free API available.
Ablation studies. We compare with alternative designs of
our model that remove key features including latent con-
catenation, fused cross-attention, and Gaussian noise de-
cay. Due to space limits, parts of the ablation results are
presented in the supplementary material.

6.3. Qualitative Evaluation

Human-scene interaction. Fig. 1 presents inserting a hu-
man into a scene based on an action prompt. The model
maintains pixel-level scene consistency while placing the
subject correctly without a predefined mask. The generated
video features natural camera movements, object updates in
response to human actions, and scene animations.
Diverse affordance. In scenes with complex layouts and
multiple interaction possibilities, our model inserts subjects
while accounting for diverse scene elements and action-
affording objects. Fig. 7 illustrates how our model deter-
mines subject placement and imagines body poses for dif-
ferent actions (e.g., riding vs. standing beside a horse).
Human-human interaction. Fig. 8 shows adding a sub-
ject to interact with both the scene and an existing person
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“Sitting on chair 
with hands 

resting on lap.”

“Relaxing 
while 

engrossed in 
reading.”

“Riding the 
horse through 
the grassfield.”

“Holding the 
rope, leading 

the horse 
across a lush.”

“Attaching the 
saddle, 

adjusting the 
stirrups.”

“Sketching a 
detailed 

drawing of the 
greenery.”

“Giving a 
guided tour of 

her lush 
greenhouse.”

“Pruning the 
leaves off of 
a fruit plant.”

“Relaxing on 
bed, holding 

a remote 
control.”

“Meditating 
on bed, 

cross-legged.”

Figure 7. Our model generates diverse videos with multiple action prompts given the same scene. It identifies the correct way for an
inserted subject to interact with the scene, and infers location, pose, action, spatial relationship without a pre-defined human mask prior.

“Sitting on a bench in a 
park, playing guitar and 

singing.”

“Sitting on two yoga 
mats, practicing yoga 

in a living room.

“Holding glasses of 
wine, enjoying a relax 

day on a boat.”

“A doctor standing 
beside a woman lying 

on a medical bed.”

“Sitting on a bed, 
holding and strumming 

a guitar together.”

“Sitting on a bench 
outside, working on 

their laptops.”

“A young woman 
holding her baby next 
to the bed, smiling. ”

Figure 8. Our model is able to add an extra subject to a scene that contains one person. Here we consider the existing person as an organic
part of the environment, and are able to synthesize interactions respecting both the background and the human in the scene. Top row is
input scene image, middle row is the action prompt, and the bottom row is middle frame of the generated video.

who is considered a part of the scene.

Baseline comparison. Fig. 9 demonstrates that our model
achieves the highest semantic alignment and visual fidelity.
Instruction-based editing methods like InstructPix2Pix and
AnyV2V [6, 35] generate distorted human bodies and mis-
attribute prompt concepts (e.g., applying “pink” to the
treadmill or curtain instead of clothing). Editing methods
based on better image model Flux [37] does not preserve
scene styles and generates cartoon videos. Flux [37] In-
painting distorts human bodies even when provided with an
additional mask and fails to preserve pixel details in masked
background regions (the yellow pillow disappears). Current
best open-sourced and commercial image-to-video models
like CogvideoX[70], Runway Gen-3 [52] and Luma Ray-
2 [2] all misinterpret the treadmill’s affordance, place sub-
jects in the wrong direction, and hallucinate another tread-
mill on the left. Our models stand out by successfully pre-
serving the background and simulating natural interactions
between the subject and the treadmill.

6.4. Quantitative Evaluation

We evaluate our model based on human video faithfulness,
text-video alignment, and action quality. This corresponds
to three major quantitative metrics: (i) FVD (Fréchet Video
Distance) [59], which quantifies the similarity between real
and synthetic video embedding distributions. (ii) CLIP [49]
similarity, which computes the average embedding similar-
ity between the input prompt and each generated frame to
assess prompt alignment. (iii) Action Score, computed by
querying a pre-trained VQA model [73] with “What action
is the person performing in this video?” and measuring
the CLIP similarity between the recognized motion and the
ground-truth action prompt. The Action Score helps isolate
interaction accuracy by reducing the influence of appear-
ance. For image-only baselines, we compute metrics on the
animated video sequence using CogVideoX [70], one of the
best open-sourced image animation models.

We quantitatively compare our model with baselines and
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“A young girl with pink shirt and black yoga pants is exercising on a treadmill in her living room…”
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Figure 9. Comparison with baseline methods. Three rows are the first, middle and last frames for each method. The left three columns’
models edit a static frame and animate it. The next four edit video directly. Note that Flux [37] Inpainting requires a user-defined mask as
input, which eases the task and greatly assists the model in predicting human position. Yet, our model outperforms baselines in terms of
human placing, motion simulation and appearance rendering. See video results and more comparison in the supplementary materials.

Table 1. Quantitative evaluation shows our method consistently
outperforms baselines and ablation methods.

Model CLIP ↑ FVD ↓ Action Score ↑
InstructPix2Pix 0.19 302 0.14
Flux Inpainting 0.40 174 0.65
Flux Editing 0.23 332 0.63
AnyV2V 0.23 290 0.33
CogVideoX 0.38 199 0.69

w/o x-concat 0.46 185 0.76
w/o cross-attn 0.59 220 0.55
w/o fusion 0.65 171 0.85
Ours 0.67 168 0.88

ablated variants. Results in Tab. 1 show that our model con-
sistently outperforms others in human video quality, text
alignment, and action faithfulness.

6.5. Human Evaluation

We supplement our analysis with a structured A/B test hu-
man evaluation. We assess the results based on four criteria:
(i) Scene consistency (SC) evaluates how well the video
preserves the original scene, even with flexible camera an-
gles and scene motions. (ii) Human quality (HQ) assesses
the realism of the generated human body. (iii) Text-prompt
alignment (PA) evaluates how accurately the generated ac-
tion and appearance match the given prompt. (iv) Affor-
dance prediction (AP) assesses the interaction plausibility
between the subject and the scene. Tab. 2 presents the per-
centage of subjects preferring each model, demonstrating
that our model is consistently perceived as more realistic,

Table 2. Human evaluation preference comparison with baseline
approaches. Percentage rounded to integer shows how many hu-
man subjects prefer our model over the baseline or ablated model.
100% means our model is always perceived as better.

Model SC (%) HQ (%) PA (%) AP (%)

InstructPix2Pix 100 98 100 96
Flux Editing 87 94 99 97
Flux Inpainting 95 79 60 57
AnyV2V 100 100 100 98
CogVideoX 68 87 74 89
Runway Gen-3 54 65 67 70
Luma Ray-2 55 59 69 75

w/o x-concat 99 48 53 76
w/o cross-attn 73 89 61 69
w/o fusion 54 52 58 60
w/o noise decay 76 48 56 53

natural, and capable of producing reasonable interactions
compared to baselines and ablations.

7. Conclusion
We explore the ability of text-to-video models to perceive
affordance and reason about interaction through the task
of populating empty scenes with moving humans. Be-
yond a creative application, we show that video genera-
tive models implicitly learn affordance and can simulate
affordance-aware activities through extensive analysis of at-
tention features. We provide preliminary insights into effec-
tively leveraging video generative models beyond appear-
ance rendering toward interaction simulation.
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