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1 Video Results

We present motion samples from WebVid-Motion and motion samples generated
by our model in video format. Please refer to the videos folder and/or the HTML
file to view our results. The HTML page includes:

(i) Video/motion pairs from the WebVid-Motion dataset. Top is original video;
bottom is the estimated motion. If the motion is longer than 60 frames, we
present the first 60 frames.

(ii) Multi-person samples from our model. This showcases our model’s ability
to generate multi-person motion sequences with an arbitrary number of
subjects for diverse text prompts.

(iii) Comparison between 2-person motion samples from our model and 2-person
motion baselines. This showcases our model’s ability to generate 2-person
motion sequences with open domain prompts.

(iv) Visualization of our model results with different pose/motion guidance
terms. This illustrates how a higher motion guidance scale is able to im-
prove the motion quality of each person, while a higher pose guidance scale
is able to coordinate the interaction among multiple subjects.

2 Limitations

Pose Dataset. Several limitations of our pose dataset relate to the performance
of BEV. BEV often does not provide precise 3D location estimates. This is due
to some extent to the innate ambiguity of predicting 3D information from a
2D image. Poses predicted by BEV sometimes do not accurately reflect poses
in the source image. The poses predicted by BEV might not capture nuanced
details that are obtained from motion capture data. The issues discussed above
could potentially be alleviated by employing generative post-processing such as
BUDDI [2] to refine the BEV estimates. We performed initial experiments ap-
plying BUDDI to our pose data and saw promising results. However, we leave
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further investigation for future work. Another limitation of our pose dataset is
hallucinations from the Instruct BLIP captioner. Nonetheless, Instruct BLIP
essentially always provided better pose captions than the LAION text. An ad-
ditional limitation is that our pose samples over-represent certain pose config-
urations, especially people standing for photos. Balancing the dataset across
different types of poses and motions is a direction for future work. Our approach
will benefit as more robust methods for estimating 3D poses from in-the-wild
images become available.

Motion Dataset. We use two motion datasets with more than two people in our
training. However, neither can be considered a multi-person motion dataset that
is grounded in real-world motions with a high level of accuracy like HumanML3D
and Interhuman. HumanML3D-Comp does not involve any interaction among
subjects. WebVid-Motion does not match the quality of motion capture datasets
since TRACE often suffers from inaccurate estimation especially for translation.
Even after curating the samples where TRACE performed at its best, we still
find the predicted global translations show noticeable jitter over nearby frames.
The motion estimation quality is severely downgraded especially if the human
movement is entangled with complicated camera movements. We believe the
quality of multi-person motion data is still the major bottleneck of our model.
Our joint training would very likely benefit newly emerging data either from
multi-person motion capture or from more accurate methods for estimation 3D
group motions from video.

Evaluation. It is hard to evaluate text-driven multi-person motion generation
results without a good shared embedding space for text and multi-person motion.
Prior works train a shared encoder based on HumanML3D [1] for single person
motion. As our WebVid-Motion multi-person motion dataset is relatively small
and not a real motion capture dataset, we believe training a motion encoder using
our multi-person motion data would not yield a reliable model. Thus we decide
to evaluate the model in a decomposed way by measuring the quality of poses for
snapshot frames and motions of single subjects. We believe the LAION-Pose data
quality is high enough to make this is a reliable solution to measure the quality
of the poses in snapshot frames. Yet there remain limitations in our ability to
evaluate the quality of individual motions. We use FID between HumandML3D
motions and single motions from our multi-person motion samples to evaluate
model motion quality. However, there is a distribution mismatch between our
generated samples and the reference samples because the motions described by
the LAION-Pose prompts along with center-frame pose conditions will likely not
result in a motion distribution close to that of HumanML3D motions even if our
model is perfect. Nonetheless, we do find some evidence motion FID can provide
a rough measure of model motion quality. This is likely because the motions in
HumanML3D like contain representative sequences that are echoed in a large
proportion of in-the-wild motions. Establishing more robust methods for measur-
ing the quality of multi-person motions is an important direction for future work.
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Model. Our model is not designed for complex sequences along the temporal
axis (i.e. do A and then do B). It also cannot generate motion for specific texts
describing individual motions in a group (i.e. three people do A and two people
do B). This is because our training prompts are mostly describing short motions
on a group level. Better datasets with specific textual annotations could extend
the capabilities of our model.

3 Data Processing Details

We elaborate on some of our data filtering and processing steps below. Fig. 1
shows LAION images removed by different stages of the filtering pipeline, and
Fig. 2 presents images that make it through all stages. Fig. 3 presents LAION-
Pose samples before and after processing.

3.1 LAION-Pose

LAION Metadata Filter. Before processing data, we used the LAION meta-
data to remove unsuitable samples. Images with height or width fewer than 256
pixels are removed because BEV performs poorly on these samples. We only pro-
cess images where the likelihood of harmful content is annotated as UNLIKELY
and remove all others.

Hand-Crafted Prompt Filter. A list of all hand-crafted prompts is given
below.

– a picture of a piece of clothing
– a picture of a shirt
– a cd cover
– a dvd cover
– a book cover
– a video game cover
– a photo of shoes
– a webpage screen with text
– a poster with text

Vertical Height Adjustment. Vertical height adjustment ensures that the
height coordinate of the lowest vertex on each mesh is set to the height of the
ground. This is accomplished by calculating the SMPL meshes from the SMPL
parameters, finding the vertex on the mesh with the lowest height, and adjusting
the height coordinate of the global translation pose parameter so that the this
vertex is on the ground. In the majority of cases, vertical height adjustment does
not change the essence of the group pose while making the group pose appear
more natural in the empty rendering environment and compensating for errors
in the 3D locations estimated by BEV. We retain the non-adjusted BEV esti-
mates for each sample and use a small bank of 10K non-adjusted samples during
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training. Accurate estimation of relative heights of group poses, and better 3D
localization overall, is an important direction for future work.

Mesh Separation. We address mesh overlap by optimizing each pair of SMPL
parameters to minimize a mesh collision loss. Overlap is measured using the SDF
(signed distance function) from all vertices in a source pose to a reference mesh:

L(θ) =
∑

k=1,...,V

−min {sdf (vk(θ)) , 0}

where vk(θ) ∈ R3 is the k-th vertex on the source pose with parameters θ and
sdf is computing the signed distance function from that vertex to the reference
mesh. Given a set of pose parameters (θ1, . . . , θn), the total collision loss is the
sum of collision losses been each subject i and the SDF of all other meshes with
parameters θj :

L(θ1, . . . , θn) =
n∑

i=1

∑
j ̸=i

Lj(θi)

where Lj is the SDF loss defined by treating subject j as a fixed reference mesh.
We run gradient descent on this loss for a fixed number of 25 steps. The resulting
meshes have no or very little overlap. Vertical height adjustment is applied after
each gradient step to ensure that the meshes remain on the ground throughout
the separation steps.

3.2 WebVid-Motion

Motion Grouping. After applying TRACE to the selected videos, the TRACE
outputs are processed by detecting all clips where two or more subjects appear si-
multaneously in the video for at least 30 frames. In practice, we start by scanning
through all pairs of subjects and keep those with more than 30 frames overlap in
time. Then we merge any clips of subjects with at least 2 people in common, and
more than 30 frames of temporal intersection. Frames that do not contain all
merged subjects are discarded. In this way, we may sacrifice the motion lengths
a little bit to get the maximum possible number of subjects appearing in one
motion sequence. Fig. 4 shows a visual explanation of the grouping effect. Here
each row represents a subject and each column represent a frame. White means
certain identity is detected at that frame and black means they are not detected.
By grouping and merging, we find those gray regions within red circles with at
least two subjects and at least a certain length. This video sequence, for example,
produces five multi-person motion sequences at different frames with different
subjects.

4 Data Format and Attention Masking

Fig. 5 visualizes our unified format for multiple datasets by drawing out the
the masked/padded and non-masked poses of different sample types. All samples
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Fig. 1: Examples BEV applied to images discarded in different data filtering steps.
Filtering removes images where BEV is not suitable for application or where it produces
unsatisfactory results.

Fig. 2: Examples of BEV applied to images that get through all the filters. BEV
produces accurate results for the majority of images that make it through all filtering
stages.
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Fig. 3: Examples before (top) and after (bottom) each pose correction steps.

Fig. 4: Motion grouping visual explanation.

Fig. 5: Exemplar padding/masking of samples from our multiple datasets. Our model
can also accommodate samples where different subjects are unmasked for varying time
windows which do not fully overlap, although this is not done in the current work.
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are treated as motion sequences with a F maximum frames and N maximum
subjects. Sequences will generally have fewer than F frames (possible only a
single frame) and/or fewer than N subjects (possibly only a single subject). For
the purpose of parallel batch processing, padding is added until each sequence has
the maximum number of frames and subjects so that all samples in a batch have
the same shape. Padded states are masked out when passing through attention
layers. Pose layers will mask out padded subjects, and motion layers will mask
out padded frames. In principle F and N can be set to arbitrary numbers,
although our model will not work on sequences/groups that are longer/larger
than those seen during training.

5 Evaluation Details and Metrics

We use similar set of metrics as in [1]. The details of each metric are explained
below. Metric computation involve three types of features: ground-truth motion
features fgt, generated motion features fpred, and text features ftext. These fea-
tures are obtained from a contrastive feature extractor that we trained following
CLIP [3]. We train a pose feature extractor and text feature extractor using text
and pose pairs from LAION-Pose and a single-person motion feature extractor
using HumanML3D text and SMPL motion pairs. We do not use the text fea-
ture extractor trained with motion data and primarily use the motion feature
extractor to measure the realism of single-person motions using FID. 10K ref-
erence samples of the LAION-Pose validation data and HumanML3D training
data are used to compute pose and motion fgt respectively. Reference samples
are used only for FID. All metrics use 1024 generated samples except Multi-
modality which uses 100 generated samples. fpred is obtained from the pose and
motion encodings of the generated samples. Pose features are extracted every 15
frames and motion features are extracted for each subject in the generated mo-
tions. The maximum number of people is set to 10 and the number of generated
frames is 61. All samples are generated with prompts from LAION-Pose. ftext is
calculated from these prompts using pose text feature extractor.

FID (Frechet Inception Distance) measures the distance between generated
and testing motion distribution, and thus assesses the overall quality of generated
motions. FID is computed as

FID = ∥µgt − µpred ∥2 − Tr
(
Σgt +Σpred − 2 (ΣgtΣpred)

1
2

)
where µgt and µpred are mean of fgt and fpred. Σ is the covariance matrix and
Tr is the trace of a matrix.

R-precision measures retrieval accuracy by comparing the text to the generated
motions. 1024 generated samples are split into 32 groups, each with 32 pairs. We
compute the Top 1, 2, 3 retrieval accuracy within each group for each of the 32
pairs, and take average over the 32 groups.
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Similarity (Sim) measures the cosine similarity between pairs of generated
motions and text prompts in the feature space:

Sim =

N∑
i=1

fpred,i · ftext,i

where fpred,i and ftext,i are the features of the i-th text-motion pair. The encod-
ings fpred,i and ftext,i are normalized and similarity scores have an upper bound
of 1. A similarity near 0 indicates a lack of alignment.

Diversity (Div) evaluates the differences between independently sampled mo-
tions. tion sequences in the dataset. We calculate this by randomly selecting Sdis
pairs of motion features fpred,i and f ′

pred,i and then computing:

Diversity =
1

Sdis

Sdis∑
i=1

∥∥fpred,i − f ′
pred,i

∥∥ .
Sdis is set to 300 in our experiments.

Multimodality (MM) assesses the variance within motions generated from a
single text. For each of 100 text descriptions, we generate 20 motions which are
split into two subsets containing 10 motions each. The features of the j-th pair
for the i-th text description are denoted as fpred,i,j and f ′

pred,i,j . Multimodality
is defined as:

MModality =
1

10N

N∑
i=1

10∑
j=1

∥∥fpred ,i,j − f ′
pred ,i,j

∥∥ .
6 Ablation on Guidance Terms

Classifier-Free Guidance. In Tab. 1 we provide additional ablation results
on classifier-free guidance terms at sampling time. Note how the pose scores
increase along with the classifier-free guidance strength in both first and second
stages. As found in other diffusion and motion generation works, classifier-free
guidance improves the sample quality and text-sample alignment.
Pose Guidance. In Tab. 2 we provide additional ablation results on multiple
pose guidance terms at sampling time. Note how the pose metrics improve along
with the pose guidance strength.
Motion Guidance. The effect of motion guidance strength can be more di-
rectly seen through visualized samples. Refer to the bottom of the video page
for a grid comparison of different pose and motion guidance strength. Note how
the motion quality gets better with a higher motion guidance score (smoother,
more natural). In particular, we found motion guidance very helpful for reducing
translational jitters that are likely learned from imperfections in WebVid-Motion
samples. On the other hand, the text-motion alignment gets worse as guidance



Title Suppressed Due to Excessive Length 9

increases due to the unconditional nature of our motion model. The guidance
strength is set to a value where motion quality is visually improved without too
much degradation in the pose quality metrics. For example, the motion often
disregards the textual description itself and starts to show HumanML3D type
motions like walking instead of standing still. As discussed in the limitation sec-
tion, motion FID provides only a rough estimate of motion realism and motion
FID scores slightly increase even as visual motion quality clearly improves when
guidance is applied.

Table 1: Ablation results for different classifier-free guidance term scales. The “1/2”
here means different scales for the first and second stage of our model.

1/2 CFG P-R-Precision ↑ P-FID ↓ P-Sim ↑ P-Div → M-FID ↓ M-Div →Top-1 Top-2 Top-3

Data 0.621 0.737 0.819 0.000 0.378 1.366 0.002 1.342

1.0/1.0 0.380 0.537 0.626 0.224 0.245 1.318 0.682 1.220
1.75/1.0 0.438 0.589 0.672 0.220 0.260 1.329 0.674 1.210
1.0/1.5 0.420 0.561 0.647 0.221 0.253 1.328 0.677 1.205
1.75/1.5 0.539 0.704 0.776 0.229 0.304 1.329 0.684 1.220

Table 2: Ablation results for different pose and motion guidance term scales.

P/M Guidance P-R-Precision ↑ P-FID ↓ P-Sim ↑ P-Div → M-FID ↓ M-Div →Top-1 Top-2 Top-3

Data 0.621 0.737 0.819 0.000 0.378 1.366 0.002 1.342

0.0/0.0 0.525 0.685 0.766 0.253 0.297 1.328 0.687 1.204
0.2/0.0 0.546 0.696 0.780 0.218 0.303 1.341 0.673 1.231
0.4/0.0 0.560 0.723 0.795 0.200 0.310 1.342 0.683 1.234
0.0/0.2 0.515 0.677 0.769 0.207 0.300 1.335 0.700 1.207
0.2/0.2 0.549 0.710 0.791 0.192 0.307 1.340 0.713 1.220
0.4/0.2 0.547 0.713 0.778 0.173 0.309 1.332 0.706 1.211
0.0/0.4 0.535 0.694 0.776 0.193 0.354 1.377 0.727 1.229
0.2/0.4 0.529 0.702 0.792 0.181 0.354 1.382 0.715 1.210
0.4/0.4 0.556 0.718 0.790 0.175 0.315 1.382 0.736 1.118
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