
Animating Street View
Mengyi Shan

shanmy@cs.washington.edu
University of Washington

Seattle, WA, US

Steve Seitz
seitz@cs.washington.edu
University of Washington

Seattle, WA, US

Brian Curless
curless@cs.washington.edu
University of Washington

Seattle, WA, US

Ira Kemelmacher-Shlizerman
kemelmi@cs.washington.edu
University of Washington

Seattle, WA, US

ACM Reference Format:
Mengyi Shan, Steve Seitz, Brian Curless, and Ira Kemelmacher-Shlizerman.
2023. Animating Street View. In SIGGRAPH Asia 2023 Conference Papers (SA
Conference Papers ’23), December 12–15, 2023, Sydney, NSW, Australia. ACM,
Sydney, Australia, 5 pages. https://doi.org/10.1145/3610548.3618230

In this supplementary �le, we provide more implementation details
of our system not included in the main paper.

A RECONSTRUCTION
Wemostly describe how the scene is set up in Unity after estimation
of major scene properties. These functionalities are implemented
in scripts so that we don’t have to manually create and edit the
objects through graphical user interface.

A.1 Inpainting
We refer to the Pedestrian and Vehicle classes from the segmenta-
tion map as intended inpainting regions. We �rst divide the regions
into connected components for every single pedestrian and/or car.
Then we cluster the objects into groups based on adjacency, crop a
local 512 ⇥ 512 patch, and take the smallest rectangle with a 10%
margin that covers the inpainted region as the mask. We use "A
photo of an empty street" as the inpainting prompt, and "Human,
pedestrian, vehicle, car" as the negative prompt. Finally we compose
the inpainted cropped patches back onto the original image.

A.2 Walk/Drive Region Segmentation
We start with deciding if the �gure is pedestrian-only or vehicle-
only by segmenting the image with keywords "drive" and "walk" us-
ing [Lüddecke and Ecker 2022]. If the resulting walk(drive) region is
less than 1% of the image area, wemake the scene vehicle(pedestrian)-
only. With a vehicle(pedestrian)-only scene, all the Sidewalk and
Road pixels are identi�ed as drive(walk) regions. In scenes with
both pedestrians and vehicles, Sidewalk pixels are "walk" regions
and Road pixels are "drive" regions. To handle objects on street
that "blocks" some of the ground pixels, we always dilate the walk
regions by 20 pixels and then erode it by 20 pixels (for a 4032⇥ 3024

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0315-7/23/12.
https://doi.org/10.1145/3610548.3618230

image) thus keeping the main region unchanged but adding on the
blocked regions. At the same time, we automatically compute the
lowest grounded pixel ? and radius A of each objects (poles, pole
groups, etc) on street by considering each of them a cubiod mesh.
When projecting to BEV map, each object is approximated as a
circle with center at ? and radius A .

We decide the start and target points for each pedestrian by
taking all the "walkable" pixels at the boundary of the image, and the
farthest 5% of all "walkable" pixels. When initializing a pedestrian,
we randomly choose one point from the "intersection" pool and
one point from the "farthest" pool.

We compute the car lanes by taking an average car lane width of
11 feet. We divide the approximated road region into = = 1, 2, 3 or 4
lanes of the same width so that the width is closest to the average
car lane width of 11 feet. Our system is not able to handle more car
lanes, extreme car lane width, or curved car lanes.

A.3 Ground Plane Estimation
After estimation the plane equation 0- + 1. + 2/ = 1, we set up
a Plane GameObject in Unity with scale 100 ⇥ 100m following
the equation 0- + 1. + 2/ = 1, with the camera pointing towards
positive / -axis. This GameObject is set to be a rigid body without
gravity so that it automatically stays at the estimated position as a
playground for the characters.

We additionally take advantage of existing characters in the
scene to help adjust the scale of ground plane equation if the given
scene is not fully empty. In that case, we compute a constant B
with the pre-estimated 0,1, 2 so that 0- + 1. + 2/ = B instead of
0- + 1. + 2/ = 1. This �xes the ground plane normal but adjust
the scale of objects.

When there are Building wall pixels next to the ground region
as indicated by the semantic segmentation results, we build a wall
Plane GameObject in Unity that is perpendicular to the wall/ground
boundaries. This is prepared for rendering shadow cast on the
building regions.

A.4 Sun Estimation
The script automatically sets up a directional light as the sun af-
ter estimating the direction and intensity. Because we are only
using the light source in Unity, we don’t bother estimate a full
environment light map but instead attempt to predict one sun light
intensity value and one environment (ambient) light intensity value.
In practice, we �nd that subtle intensity di�erence is not too much
noticeable as long as in a reasonable region. We divide the scene

https://doi.org/10.1145/3610548.3618230
https://doi.org/10.1145/3610548.3618230

SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia Mengyi Shan, Steve Seitz, Brian Curless, and Ira Kemelmacher-Shlizerman

into three weather categories based on the variance E of sun direc-
tion prediction bins, and set �sun and �ambient according to Table
1.

Table 1: Sun light and environment light settings

�sun �ambient E range Weather Strong directional light

2 1.5 E > 0.3 Sunny Yes
1.5 2 0.1 < E < 0.3 Sunny No
1 1.5 E < 0.1 Cloudy No

We prepare data for the sun estimation network by taking the
19093 panoramas in the dataset, and generating 10 perspective
images from each panorama, randomly choosing the FOV from (60,
80, 90) degree, camera elevation from (-10, 0, 10) degree, and camera
azimuth from (150, 180, 210, -30, 0, 30) degree, so that the data covers
a wide enough range of images similar to our test images. The sun
estimation network is trained with Adam optimizer with a learning
rate of 1e-3. We train the network for 50 epochs with batch size 16.
We train on two GeForce RTX 2080 GPUs for four days.

A.5 Shadow Occluders
We start with identifying shaded ground regions by processing
the image with [Hong et al. 2022] and taking ground pixels with
prediction values greater than 0.1. We project these shaded ground
pixels in the image back to a plane of height ⌘ = 10 with a given
sunlight direction. In Unity, we add Cube objects with size 0.1 ⇥ 0.1
meters at each position so that they block the sun light properly to
mimic the existing shadow e�ects in the image. At rendering time,
we keep the shadow e�ects created by these Cube occluders but set
themselves invisible. If the �gure is identi�ed as without strong
directional light source, the shadow occluders are disabled in the
rendering stage.

B SIMULATION
B.1 Crowd Simulation
Here we provide an in detail derivation of the crowd simulation
algorithm. We would like to compute the optimal path % by

argmin
%

U

π
%
13B

| {z }
Path Length

+ V
π
%
13C

| {z }
Time

+ W

π
%
63C

| {z }
Discomfort

(1)

where U, V,W are weight parameters that could be set by hand.
The integral terms 3B means that the integral is taken with respect
to path length while 3C means the integral is taken with respect to
time. These two variables satisfy the relationship 3B = E3C where E
is the speed. This can be further simpli�ed to

argmin
%

π
%
⇠3B, where ⇠ ⌘ UE + V + W6

E
(2)

In practice, we set U = V = 1 and W = 2. To compute the dis-
comfort �eld, we make the value linearly decrease through the
10 closest grid to obstacle boundaries and sidewalk boundaries.
We take advantage of the fast-marching algorithm implemented

in scikit-fmm1 to compute the potential �eld. And use a step size
�C = 0.1 to move the characters in the direction of descending
potential.

B.2 Tra�c Simulation
We store the cars on each lane in a Linked-List style data structure,
with each car object pointing towards the previous car (or to null if
it’s the �rst car in a row). If the tra�c light turns red for cars, the
car objects within a distance threshold to the crosswalk will start
decelerating so that it can stop within 3 = 1 meter to the crosswalk.
At the same time, a car will automatically decelerate no matter
what the tra�c light is if it becomes too close to the previous car,
so that it can stop within 3 = 1 meter to that car. We dynamically
compute the threshold distance to start decelerate or accelerate
based on speed, deceleration and acceleration values. In practice,
the speed is set to 15 meters per second in urban street scenes and
25 meters per second in vehicle-only freeway scenes. The accelera-
tion and deceleration are both set to 5 meters per square seconds.
These values could be changed manually to generate diverse tra�c
dynamic.

C RENDERING
We describe how the rendering and recording process is imple-
mented in Unity as well as post-processing details. These function-
alities are implemented in scripts so that all the manual works are
replaced by a simple click.

C.1 Shadow
Unity will be able to generate realistic shadow shapes for our ob-
jects, but not color because the scene albedo and material are not
reconstructed in the game engine. To merely take advantage of the
shadow shape information, we record two videos through Unity
recorder with fps = 30, one with and one without hard shadow.

To automatically decide the shadow color, we run a local shadow
color matching algorithm on the intersection of local shadow and
non-shadow regions.We take 10 patches of 200⇥200 pixels, pick one
that has shadow and non-shadow region almost 1:1, and take the
average of shadow and non-shadow RGB colors. Then we compute
a three channel ratio between these two RGB values. To shade a
pixel, we multiply it by this three channel shadow ratio.

To avoid double shadow, we only shade a pixel if it’s not in the
shadow region. To eliminate the unnaturalness when the existing
shadow is soft and blurry, we compute a boundary region by dilating
the shadow and non-shadow region each by 10 pixels and take the
intersection. Then we apply a Gaussian blur kernel of size 20 ⇥ 20
on the boundary region’s shadow factor.

When the scene is classi�ed as without strong sun source, we
only set up a top light perpendicular to the ground and render the
shadow region with a shadow factor B = 0.9 for human and B = 0.7
for cars, because cars in general are closer to the ground and may
block more light. The shadow masks are run through a Gaussian
blur process with kernel size of 20 ⇥ 20 to create the di�use, soft
shadow e�ect.

1https://github.com/scikit-fmm/scikit-fmm

https://github.com/scikit-fmm/scikit-fmm

Animating Street View SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia

If there is a reconstructed building wall object in the scene, we
treat it in the same way as the ground plane and record shadow
cast on that plane.

C.2 Occlusion
To acquire the depth values of the added objects, we simulate a
depth camera with the exact same parameters as the RGB camera to
record a depth video during the rendering process. This is achieved
by a customized shader in Unity.

We re�ne the estimated depth ⇡bg for each pixel belonging to
pole, pole group, traffic sign, traffic light classes by com-
puting their contact point with ground and depth of that pixel given
ground equation. Speci�cally, we divide the segmentated objects
regions into instances by connected components segmentation, and
identify the grounding pixel of each objects. Because we know the
ground plane equation, we can back project this pixel into 3D to
retrieve its depth. This method assumes that the objects are thin
and almost perpendicular to the ground plane.

D ASSETS
We directly buy assets for pedestrian and cars from online asset
stores. Speci�cally, the car assets are bought from the o�cial Unity
Asset store2, the pedestrian assets are bought from RenderPeople3
and additional walking motion clips are bought from ActorCore4

We make each pedestrian character a prefab in Unity with a
CharacterController component and a Animator component.
The former controls gravity and path following, while the latter
controls switching between Idle and Walk motions with di�er-
ent speed. When playing the characters in Unity, we make each
character controller walk on their own pace with a root motion
baked into the pose, so that they won’t look like �oating on the
ground. We build the path following mechanism through controller
the rotation of each character controller. In practice, we keep the
character always facing towards the next not reached point on
the predicted path. Unity’s built-in Quaternion.RotateTowards
function controls a smooth rotation towards the direction of next
point, instead of a hard turn. This in fact provides tolerance to some
unnaturalness of our planned path, because Unity will be able to
smooth out the path again without violating the main structure.

Similarly, we make each car object a prefab in Unity and di-
rectly change their positions at each time step. We implement the
accelerating and deccelerating e�ects by linearly increasing and
decreasing the cars’ moving speed.

As a demo, we only include six di�erent character appearances
for pedestrians, two walking motion pieces, and a dozen of car
models. This could be extended to any number of diverse assets to
create even better visual e�ects.

E PANORAMA
For the reconstruction and rendering stage, we decompose the
equirectangular panorama into 6 still images in a cubemap manner,

2https://assetstore.unity.com/packages/3d/vehicles/archviz-car-collection-pack-1-
169659
3https://renderpeople.com/free-3d-people/
4https://actorcore.reallusion.com

(a) (b)

Figure 1: Assets used in the rendering process. (a) Pedes-
trian character assets fromRenderPeople. (b) Car assets from
Unity Store.

and apply all the processing steps (depth estimation, semantic seg-
mentation, inpainting, shadow/occlusion composition) with each
direction (up, down, left, right, top, bottom). Crowd simulation is no
di�erent from regular images as long as we can project the semantic
segmentation information to the BEV representation.

In Unity, because there is no ready-to-use implementation of
360 depth camera, we render six cameras at the same time in a
cubemap manner, and convert from cubemap to equirectangular
when viewing.

F IMAGE ATTRIBUTION
• The empty solar spring intersection and crosswalks
by Aleksandr Volkov with standard license at Adobe Stock.
Asset ID #156108165. Figure 16 �rst row �rst column. Video
00:02-00:12, 02:20-02:42.

• Mijas white washed street, small famous village in
Spain. Charming empty narrow streets with New Year
decorations, onhouseswalls hanging�ower pots, sunny
day no people. Costa del Sol, Málaga by Alex Tihonov
with standard license at Adobe Stock. Asset ID #319516381.
Figure 9 top left. Video 01:00-01:15.

• Empty street - Sunday afternoon by dinu_dragomirescu.
Wikimedia Commons. CC BY 3.0. Video 04:10-04:25. Figure
16 second row.

• Empty streets by Geo� Staubyns. Wikimedia Commons.
CC BY 4.0. Video 03:41-03:56. Figure 8 bottom row. Figure 9
bottom left. Figure 14. Figure 2 left column.

• Empty street in a village in central Crete (Avli) by An-
natsach. Wikimedia Commons. CC BY 4.0. Video 03:26-03:41.
Figure 7. Figure 12 bottom row.

REFERENCES
Yan Hong, Li Niu, and Jianfu Zhang. 2022. Shadow Generation for Composite Image in

Real-world Scenes. In Proceedings of the AAAI Conference on Arti�cial Intelligence
(AAAI).

Timo Lüddecke and Alexander Ecker. 2022. Image Segmentation Using Text and Image
Prompts. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). 7086–7096.

https://assetstore.unity.com/packages/3d/vehicles/archviz-car-collection-pack-1-169659
https://assetstore.unity.com/packages/3d/vehicles/archviz-car-collection-pack-1-169659
https://renderpeople.com/free-3d-people/
https://actorcore.reallusion.com

	A Reconstruction
	A.1 Inpainting
	A.2 Walk/Drive Region Segmentation
	A.3 Ground Plane Estimation
	A.4 Sun Estimation
	A.5 Shadow Occluders

	B Simulation
	B.1 Crowd Simulation
	B.2 Traffic Simulation

	C Rendering
	C.1 Shadow
	C.2 Occlusion

	D Assets
	E Panorama
	F Image Attribution
	References

